

СИСТЕМА

УПРАВЛЕНИЯ

НАСОСАМИ

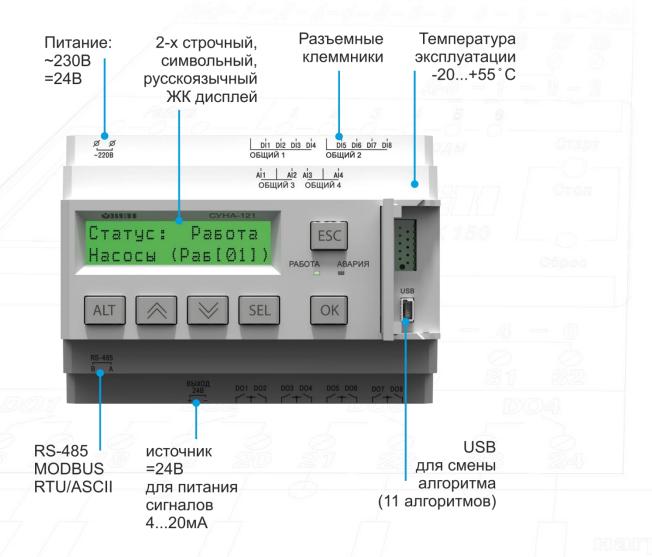
АВТОМАТИЧЕСКАЯ

ИДЕЯ

Назначение прибора СУНА:

Прибор СУНА-121 предназначен для управления насосной группой из двух или трех насосов одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними.

Основные преимущества прибора СУНА:


- > универсальность применения;
- ▶ большой выбор алгоритмов;
- ▶ возможность самостоятельной смены алгоритмов;
- > двухстрочный символьный индикатор;
- > интуитивно понятный интерфейс;
- > режим ручного управления.

Технические характеристики:

Наименование	Значение (свойства)		
	СУНА-121.220	СУНА-121.24	
Количество дискретных входов	8		
Количество аналоговых входов	A/L9 _ 04	_ a _ m	
Количество дискретных выходов	8		
Дискретный вход логическая «1»	159264 B	1530 B	
Дискретный вход логический «0»	040 B	05 B	
Погрешность измерения аналоговых входов	0,5 %		
Эл. прочность развязки «блок питания»	2830 B	1780 B	
Эл. прочность развязки «RS485»	1500 B		
Эл. прочность развязки «дискретные входы»	2830 B		
Гипы крепления	DIN рейка, 35 мм		
Габариты, (Ш x В x Г)	(123 x 90 x 58) mm		
Сетевой интерфейс	RS-485		
Протокол передачи данных	ModBus RTU/ACCII		
Встроенный источник питания	24 B	нет	

основные достоинства

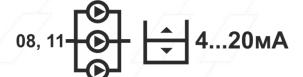
АЛГОРИТМЫ РАБОТЫ

Чередование 2-х насосов

Чередование 3-х насосов

Регулирование давления, 2 насоса, по реле давления

Регулирование давления, 2 насоса, по аналоговому датчику давления



Регулирование давления, 3 насоса, по аналоговому датчику давления

Заполнение и опорожнение резервуара, 2 насоса, дискретные датчики уровня

Заполнение и опорожнение резервуара, 2 насоса, аналоговые датчики уровня

Заполнение и опорожнение резервуара, 3 насоса, аналоговые датчики уровня

ПЕРЕСЕЧЕНИЯ С ОВЕН САУ

Алгоритм управления	САУ-МП	САУ-У	СУНА-121
чередование 2-х насосов	11, 13, 15	11, 13, 15	01
чередование 3-х насосов	14, 17	14, 17	02
регулирование давления, 2 насоса, по реле давления	Не реализован	Не реализован	03
регулирование давления, 2 насоса, по аналоговому датчику давления	Не реализован	Не реализован	04
регулирование давления, 3 насоса, по аналоговому датчику давления	Не реализован	Не реализован	05
заполнение резервуара, 2 насоса, дискретные датчики уровня	12	12	06
заполнение резервуара, 2 насоса, аналоговые датчики уровня	Не реализован	Не реализован	07
заполнение резервуара, 3 насоса, аналоговые датчики уровня	Не реализован	Не реализован	08
опорожнение резервуара, 2 насоса, дискретные датчики уровня	16, 18	16, 18	09
опорожнение резервуара, 2 насоса, аналоговые датчики уровня	Не реализован	Не реализован	10
опорожнение резервуара, 3 насоса, аналоговые датчики уровня	Не реализован	Не реализован	11
3 насоса, 3 бака, заполнение	06	06	Не реализован
1 насос, заполнение, контроль «ниже нижнего», «выше верхнего»	20	01	Не реализован
1 насос, опорожнение, контроль «ниже нижнего», «выше верхнего»	Не реализован	01	Не реализован
1 насос, перекачка	Не реализован	20	Не реализован

Условные обозначения, использующиеся в схемах объекта управления:

Сигналы поступающие на вход контроллера:

 Δ P1/ Δ P2/ Δ P3 — дискретный сигнал с датчика перепада давления на насосе (=24B/~230B);

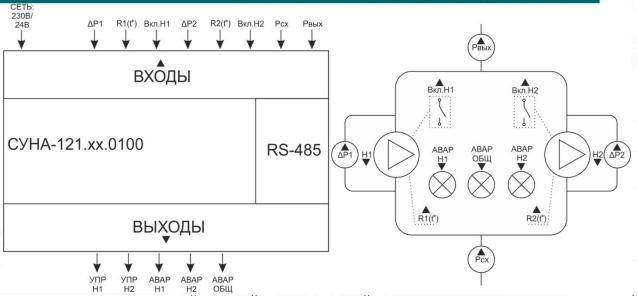
 $R1(t^{o})/R2(t^{o})/R3(t^{o})$ – сигнал с датчика температуры насоса (Ом);

Вкл. Н1/ Вкл. Н2/ Вкл. Н3 – дискретный сигнал с тумблера разрешения работы насоса (=24В/~230В);

Рсх – дискретный сигнал с датчика наличия давления на входе (=24В/~230В);

Рвых – дискретный сигнал с датчика наличия давления на выходе (=24В/~230В).

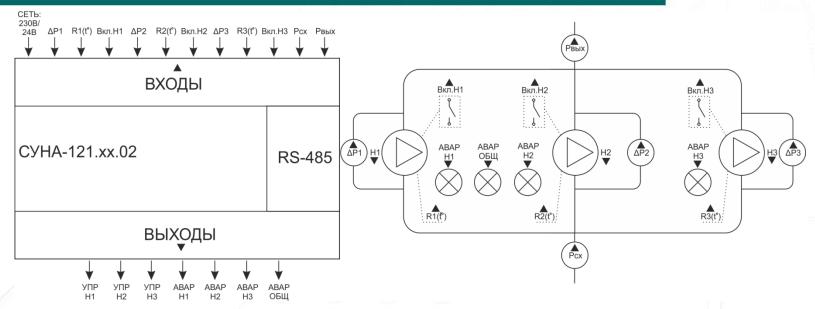
Управляющие сигналы с выхода контроллера:

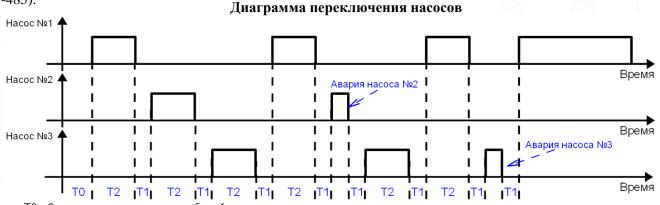

УПР H1/ УПР H2/ УПР H3 – сигнал управления насосом (Э/М реле «сухой» контакт);

АВАР H1/ AВАР H2/ AВАР H3 – сигнал аварийного состояния насоса (Э/М реле «сухой» контакт);

АВАР ОБЩ – сигнал аварийного состояния всей насосной группы (Э/М реле «сухой» контакт).

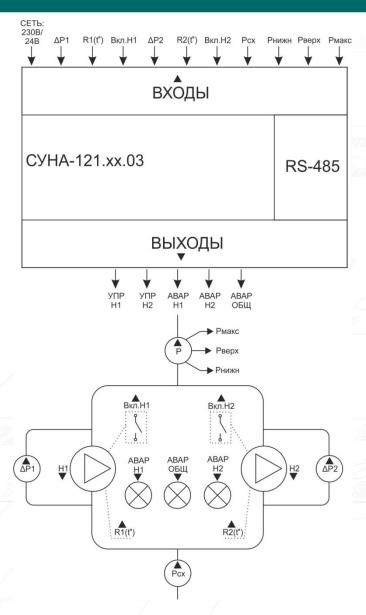
Алгоритм 01: чередование 2-х насосов


Алгоритм 01 предназначен для управления насосной станцией, в состав которой входит два насоса одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними. Регулирование мощности станции не выполняется, в автоматическом режиме работает только один насос.


- Т0 Задержка до перехода в рабочий режим после включения контроллера
- Т1 Задержка переключения насоса
- Т2 Длительность работы насоса до смены

Алгоритм 02: чередование 3-х насосов

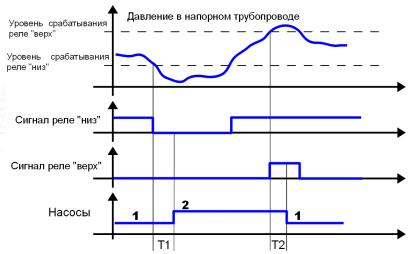
Алгоритм 02 предназначен для управления насосной станцией, в состав которой входит **три насоса** одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними. Регулирование мощности станции не выполняется, в автоматическом режиме работает только заданное количество насосов (задается либо в настройках контроллера, либо по RS-485).


Т0 - Задержка до перехода в рабочий режим после включения контроллера

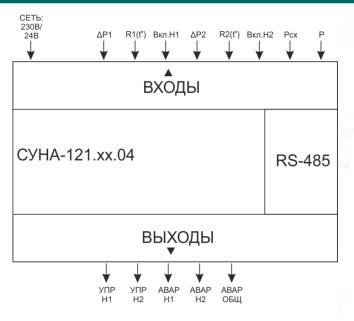
Т1 - Задержка переключения насоса

Т2 – Длительность работы насоса до смены

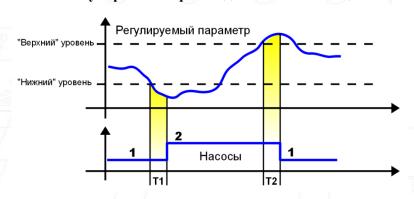
Алгоритм 03: регулирование давления, 2 насоса, по реле давления



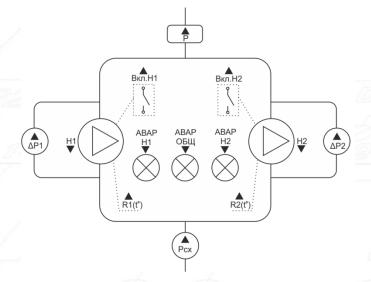
Алгоритм 03 предназначен для управления насосной станцией, в состав которой входит два насоса одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними. Регулирование мощности станции обеспечивается включением / отключением необходимого количества насосов по сигналам от дискретных датчиков выходного давления.


Т1 - Задержка переключения насоса

Алгоритм 04: регулирование давления, 2 насоса, по аналоговому датчику давления

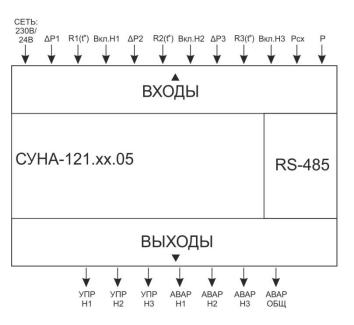


Алгоритм 04 предназначен для управления насосной станцией, в состав которой входит два насоса одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними. Регулирование мощности станции обеспечивается включение / отключение необходимого количества насосов по сигналу от аналогового датчика давления.



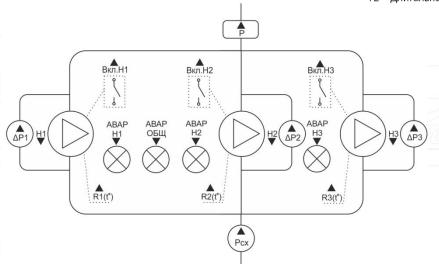
- 10 Задержка до перехода в рабочий режим после включения контроллера
- T1 Задержка переключения насоса T2 – Длительность работы насоса до смены

Регулирование производительности станции

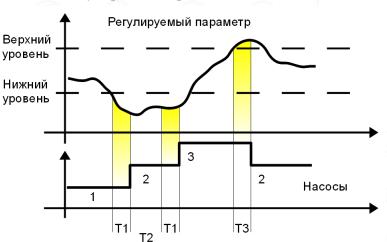


- Т1 задержка подключения дополнительного насоса;
- Т2 задержка отключения избыточного насоса.

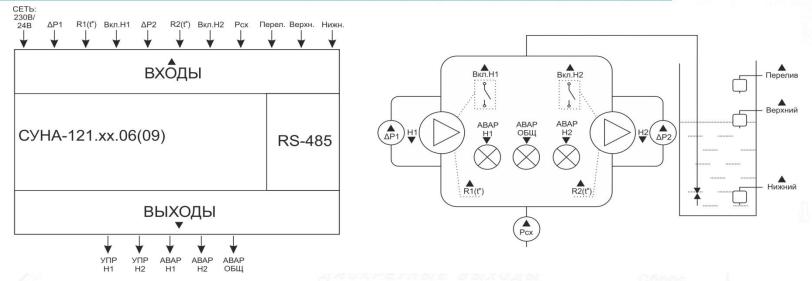
Алгоритм 05: регулирование давления, 3 насоса, по аналоговому датчику давления



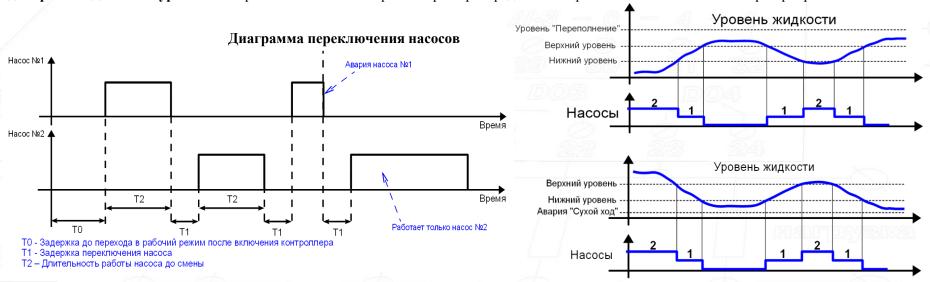
Алгоритм 05 предназначен для управления насосной станцией, в состав которой входит три насоса одного типоразмера. Алгоритм обеспечивает постоянную подачу воды, контроль состояния насосов и равномерное распределение наработки между ними. Регулирование мощности станции обеспечивается включение / отключение необходимого количества насосов по сигналам от аналогового датчика давления в напорном трубопроводе.


Диаграмма переключения насосов

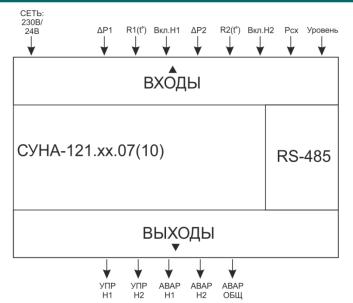
- ТО Задержка до перехода в рабочий режим после включения контроллера
- Т1 Задержка переключения насоса
- Т2 Длительность работы насоса до смены



Регулирование производительности станции

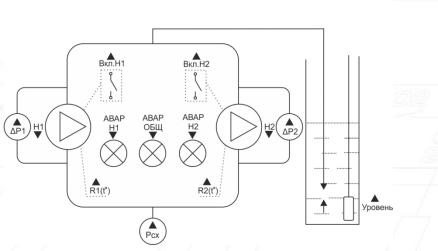


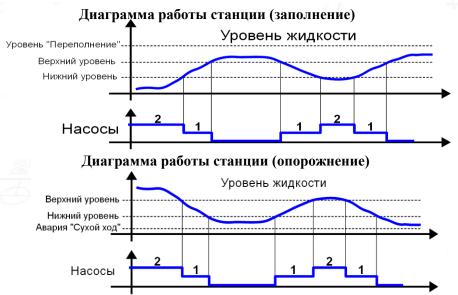
Алгоритм 06 и 09: заполнение и опорожнение резервуара, 2 насоса, дискретные датчики уровня



Алгоритмы 06 и 09 предназначены для управления насосной станцией, в состав которой входит два насоса одного типоразмера. Станция обеспечивает поддержание уровня жидкости в накопительном резервуаре/откачку жидкости из накопительного резервуара по показаниям дискретных датчиков уровня. Алгоритмы обеспечивают равномерное распределение наработки насосов и взаимное резервирование.

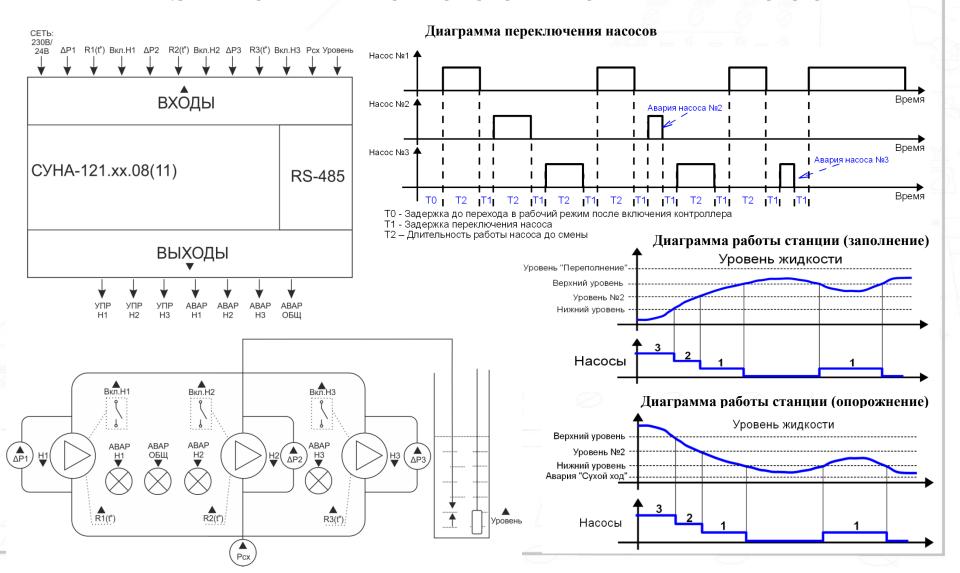
Алгоритм 07 и 10: заполнение и опорожнение резервуара, 2 насоса, аналоговые датчики уровня





Алгоритмы 07 и 10 предназначены для управления насосной станцией, в состав которой входит два насоса одного типоразмера. Станция обеспечивает поддержание уровня жидкости в накопительном резервуаре/откачку жидкости из накопительного резервуара по показаниям аналогового датчика уровня. Алгоритмы обеспечивают равномерное распределение наработки насосов и взаимное резервирование.

- ТО Задержка до перехода в рабочий режим после включения контроллера
- Т1 Задержка переключения насоса
- Т2 Длительность работы насоса до смены



Алгоритм 08 и 11: заполнение и опорожнение резервуара, 3 насоса, аналоговые датчики уровня

Алгоритмы 08 и 11 предназначены для управления насосной станцией, в состав которой входит **три насоса** одного типоразмера. Станция обеспечивает поддержание/откачку жидкости из накопительного резервуара уровня жидкости в накопительном резервуаре по показаниям **аналогового датчика уровня**. Алгоритмы обеспечивают равномерное распределение наработки насосов и взаимное резервирование.

